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“ hibit only 6he apparent peak .when theyfgiiuloéated within one

ABSTRACT

In this report the detection and estimation of closely
, oL N
spaced optical targets are studied uﬂing'simumation. “The

observed signal which originates £rom two point targets may ex=

detector width, The Akaike informaﬁidh.cniterion and a maximum

likelihood estimator are used to‘de;ect,and estimate such unre-
solved targets, For target separation between 3/4 and 1 detector
width the detection rate is high, the estimator is unbiased and

the estimation variance is close to the Cramer-Rac bound. The )

performance'dogradan greaﬁly'@hen the separation becomes smaller, "
This loss in performancs is attributed to the increasing inter- £
ference between the two targets and the difficulty in providing

e

a "good" initial gueas for the alhimator.;
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I, INTRODUCTION

In the hierarchy of BMD (Ballistic Misgile Defense) systems
functions, clossely spaced object (CS0) resolution oecurs early in -
the sequence of avents and conseguently influences the performance
of the subseguent functiéns_tp different degrees, It is very im-
portant to assess the CSO resolution capability of the sonsor
systems employed in every BMD system study before one can determine
the overall BMD system performance, The CSO resolution capability
is clearly dependent upon the sensor system and the threat charac=
teristics considered in the BMD system study. Current attenticn has
been focﬁsed on a variety of passive optical sensor systems employed
in the Layered Defense System against threats at long ranges with
high angular density. BSeveral studies have been completed re-
cently in assessing the C80 resolution performance for various
optical systems [l=4], The C80 paramater estimation performance
can elther be predicted by theoretical lower bounds, say the
Cramer-Rac lower bounds (1=4], or be evaluated by the Monte-

Carlo simulation of specific algorithms. In the earlier

studies [l=4], the ectimation accuracy for the intensity and
position of the CS0's were prasented for various lens apertures
and noise models undey the assumption that the exact number of
targets present is known. The CEQ detection performance was not
presented in these studies.

It is the purpose of this report to addreass the following
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issues through a simulation study; 1Is the above~mentioned
theoretical lower bound achievable in practice? Can the number
of targets present in the C80 cluster be detsrmined with cartg;nty
so that the assumption made is true? In the simulation, a mdﬁ-
imum likelihood estimator is implemented for the CS0.parameter .
estimation and the Akaike informatior criterion (are) is em=
ployed to determine the number of targets. A specifio sensor

and noise model as well &s the detector scanning mode is selected
for thim study. For other mensors and noise models and detactor
patterns, a similar C80 detection and estimation algorithm can

be implemented very easily. This work is in its initial stages,
The findings rapofted here are interesting but not necessarily
complete and conclusive., Further investigations are currently

in progress and will be reported in future reports,

The problems concerned in this study are first statead in
section 2. The models of signal and noise in a single sounnlﬁq
detoctor environment are ocutlined in this section. The methods
for detection and estimation are desocsibed in section 3.

Section 4 presents the Monte=Carlo simulation results of detaction
and estimation performance. The estimation performance thuse
obtained is also compared with the theoretical result. Some
details of the computational aspects of the algorithm and the

program listing are attached in the appaendices.
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II. PROBLEM STATEMENT

For the purpose of this simulation study, the optical sensor
system can be simplified and is represented in Fig. 1., Tho opti-

cal poin£ targéts which are in the rield-ofuvigw of the sensor

'1Q#ll,£b:m';n image on the focal plane...This image i often re-

férred to as the pdint spreéd funotion (PSF)., An 6ptical detaector
is usually employed to scan the image in a fixed direction., The
spatial structure of the optical image is thus convearted into a
temporal alectrical signal, This signal is then subjeotftq
amplification, filtering and analog-to-digital conversion before
antering the signal processor. Noise sources which can botin-
troduced at variocus points of the system include thorbackground«
radiation noise, scanning noise, optical-olootrical conversion
noise, amplifier noise and quantization noime,. For aimplicity,

it is assumed in this study tiat these noine sourccs can be lumped
togeﬁher-and'riprelaniad by ;ﬁ‘additiva white gausaian noiae (WGN) ,
n(t), The observations available to the detection and estimation

processor can then be written as
ylty) = ‘d(tz) + nlty) Lwl, 2,009k (1)

where nd(t) is the desired signal., Given these observations the

processor is then required to perform the following two functions:

1, Determine how many targets are embedded in the
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observed signal (detection problem)
2. Obtain intensities and poaitions of the targets
(estimation problem) ,
It is the purpose of this report to describe an algorithm for
such a processor and to svaluate its performance.
Suppose that there are n point £A£Qetn which lie along the
scanning diredtion of the dctector.* The desired signal ld(t)
is simply given by '

n
<1.) - a8, (t=T,) ' (2)
& e i -
whare a and T, are the intensity and position of the 1th target)

ao(t) is the basic target response generated by a tafgot of unit
intensity lying on the optical axis. The shape of“so(t) dépqndl
upon the PBPF of the partiocular nportufe and the ncahﬁipg ruuﬁpnqa
funotion of the detector. Suppose thé ap-rtute'is ahhuilr:with
80% obacuration; the detector response function is uniform and
equal to unity within a rectangulay gate and equal to zero

alsewhera. Then -Q(t) is given by [6].

8 /2 at+Bx/2
8, (t) n/ [ sf(x,y)dxdy (3a)

B‘ /2 at-Bx/a

"This assumption has to be made because the cross=-scan position
of a target can not be remsolved by a single detector,
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wheare

2

' 3 s

8 Jl[n(x2+y2) 1 4 Jlig-(xz*yz) ] (3b) !

8p(X,y) = |~ - - Ts: ’ . .o i

gr¥e¥ 3 1f(x2+'y2)” 3 1r(x2+y2)‘ ; \'

Here, J,(+) is the Bessel funoticn of first kind; o is the an~ 0

gular scanning rate normalized by the optical diffraction Iimit
A/dy B, and By are the in-scan and cross=-soan angular dimennidﬁs
of the detector normalized by A/d. Without loss of generality, b
the scanning rate can be assumed equal to 1 and thus the time | ' {
variable t is equivalent to the angular variable 6. These two _ é,
variables will be used interchangeably throughout this raeport. - §
The basic optical pulse, 8,(t), is dipiotod in Fig. 2 for a ;
detector with anz and BY-6° Note that there is a siight overshoot
near the center of the pulsa. Fig, 3 illustrates several sample

waveforms, y(t), from detectors of identical size for the case of

2 C80's with various intenlitieh* and positionsa. The'varianca of

the WGN is egual to 1, It can be seen that the 2 targets which are

separated by 2.5 A/d (Pig, 3a) correspond to two~peaks of y(t),

[ ¥

In this casge they can be detected and estimated with a matohed
filter followed by a peak detector. However, in PFigs, 3(5) - 3(d),
the two targets which are located within one detactdr.width(zx/d) v

interfere with each other to such a degree that only one apparent

¥The signal B4(t) = a8 (t) has the peak at the center (t=0) equal
to 10 for a »~ 9,08,
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péak is observed in the résuiting noihy'waveform. A simple peak
detector may not be capable of raesolving satisfactorily the two
targets in thede examples, Other more sophisticated detection/

estimation schemes are reguired féf this purpose,




IIT, METHODS

3,1 Akaike Information Criterion

One approach for determining the number of targets imbedded
in the observed data is to applg the generalized likelihood ratio
(GLR) test. There are some difficﬁiﬁiii”in'dppiyiné this method.
First, the distribution of the GLR 1s hard to find so that the
behavior of the test may not be known exactly. Second, since
the test can only be applied to two classes at one time, multiple
application of the test is regquired for the present problem.

Third, the choice of the test threshold is usually very subjective.
Akaike has advocated a new approach, termad the Akalke in-
formation criterion (AIC), for datermining the order of the correct

model (for the problem here, the order is the number of targets
present) [5]. This information oriterion is based on an extension
of the maximum 1ikélihood principie lﬁnzting from the fundamental
notation of entropy in statistical mechanics and the Kullback~
Leibler information quantify. The final statistic used to optimally
choose the order is defined by

AIC w (=2) loge(maximum likelihood) + 2(number of free parameters)
' (4)

The correct model is that which minimigses this criterion.

10
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Note that the first term in the definition of the AIC rapresents
2 penalty of "poor fit" and the second term characterizes in-'

creased unrellability. This. leoond term is eleantial because the

© maximum value of tha likelihood function wtth the higher ordar

model (model with more parnmntorn) il ulually groator than that \

‘of -the - imaller model and" thordfore without ‘this term, “the model

with higher order would bo favored, “Qualitatively gpeaaking, the
AIC provides a mathematical formulation of the principle of
pazsimony in model building. ‘ N »
The AIC has found many applications in various fialdl;,par-
ticularly in the autoregressive madolrfitting of time-series
analysis. 8Since the theory is general, it is eiq;ly applied to
the detection problem stated in the ia-t section, sTWp"beiaul
advantages for using the AIC in thio'probiem oaﬁ’ba seen from

Bq., (4):

1. (4) 18 very sitple.

2.

The AIC is easy to apply; Eq.
Thi'AIc coﬁbinnl the detection problem with the estima=-
tion problem. For detection (determining the order of
the model) tha information from estimation (finding the
maximum 1ikciihoad function) is needed. Once the de~
tection is done, the maximum likelihood estimates of

parameters in the correct model are also available with=
cut gdditional effort, )

Although the AIC is derived from the ideas of information

11




theory, there seems to e ho particular'balid for 'tha penalty
_factor 2, Some investigators, applying the AIC in their par=
ticular problamu, reported that thin factor lhould be botwenn
3.5'and 4 [7], It can be shown that the AIC decisior rule is

equ;valant to the hypothonil tolting procodura ut an apprcpriato. '

...........

- significance leval i the Gade of "two clauaau. ‘Ualng difkerent T L

values for the penalty factor ia analogous to adjulting the
lignificanae lavel. The affect of this factor will ba raportad
in this study. For this purpose, the AIC can ‘be rcwrittan_gl B

AIC(1) = (=2)lcq, (maximum likellioud) w2l (5]

where n is the penalty factor and 1 is the numb¢r1of targatq'pro-
llnt.* .
It is reasonable to assume that AIC(i) il a dilcrotc uni- -

modal funotion of i for a ﬁix-d vnluo of n.' Thordtﬁr- hhq datoc-

- Vtinn procaduru is uimply as follcwnc'

Step 11  Start with 1-0} compute AIC = AIC(0).
Step 2t Increment 1 by 1.
Step 3t Compute AIC(4i).

Step 41 If AIC(i) is greater than AIC, qdiﬁO'QQCp 5, Othere
wise, set AIC » AIC(i) and go back to Step 2,

¥Wo parameters, L1ntensity and pdsition, are associated with each
target,

12
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ﬁ}},

Btep 51 Stop; the number of targets presenf ig equal to
' (1=1), '

3,2 Makimumwrikeiiﬁood'ﬁétimator

_'The maximum likelihood oltimator (MLE) i- implied in the AIC

procedure. This estimator posenues sqvural nice properties. It

'oan be shown that the MLE, undaer rather ganeral apnditions, is

asymptotically unbiased and efficient: it ylelds the same results

a8 the least-Bquare method for the case of additive white
gausﬂian ioime.

For the lignal modal described in loction 2, the likalihood
fqnction oan be writtnn as

i

;e . | '7. .T | \ o
Iy - . . - ) wly . - ) {8
M) = -,x{r*( oor ()’ <__x.:_°n-%‘-2) e

whare

so(tl—Tl)' « s v 8 QBQ(tl“Tn)'
I : (7)

°<tk—?l). s e e oso(tkan}

L= (Yt ) s ¥l reuary ()T

4 S p , : i
X S(T) = lagrear@pe Tyoeasty) =Ry pee Xy, Katlr® o)
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and o, considered as an unknown parameter, is the standard de~
viation of the WGN, The maximum likelihood estimates of x and o,

denoted by £ - %) and 8 are the valuea of x and ¢ which maximize

'y

T
L(xy0)s 8ince the logarithm is a strictly increasing function,

the maximization of &(x,c) and 109512(5,0)-ar§ equivalent, Let

J(x,0) = log t(x,0) m

= = % log, (27)=klog,o ;;I(x Q) " (y=q,8) (8)

The maximum value of this funotion is the first t-rm,noodcd to
evaluate the AIC,

It is usually not nacessary to estimate the unknown ¢ ex-
plicitly and it can be dropped from the expression for J. BY
taking the derivative of J with respect to o and msetting it to

2aro, 8 is obtained as
) l T H
o = (E‘i_ﬂ"’n&) (y-Q.a) (9)
By replacing o with &, BEq. (8) bscomes

(%) = -5 {log,(2m + 1 + logg ((y-0,a)" (=0 a))} (10)

Using this logarithmic likelihood function with the first two
nuisance terms discarded, the AIC given by Eg. (5) ocan be

14
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written as
Y]
AIC(1) = klog,o“+ 2ni. - (11)

It is a;a;i that as far as the maximization is congerned
J(%x) in Bq. (10) can bas replaced with

J(x) = = (y-0,8)7 (z=Q a) . (12)

By setting the gradient of J(x) with respect to 3 equal to'zaro,
the intnnltiyrcltimato, a, can be obtained as

1

i= (0, ) 0,"¢ (13)

substituting § in Eq. (12), J can be rewritten as

-1
J(x) = x'r[gnmn""c}n) QnT-I]y_ . (14)

The maximization of the likelihood function can be done with res-
peot to expressions given by either Eg., (l2) or BEq. (l4)., The
former involves 2n parameters and the latter involves only n
parameters but requries ratrix compuations which usually neasd

more computer time. Experiénou saeems to indicate that it is easler
to use Bg. (12).

15




It should be noted that the J function is nonlinear on the un-
known parameters, Its maximization is implemented here ba using
the Quasi~Newton method [B] whigh is an iteration procedure ltaft-
ing with an initial guess, This method is appealing because it
possesses tha quadratic convergence property near the maximum of
the eriterion function (like the Newton method) and aveids the
diffioculty involved in computing the inverse of the Hemssian
matrix at each iteration (unlike the Newton mathod). At each

3 (%)
iteration, the gradient, VJ(x) = { YT iml,sess2n}, is required,
i

which, from Eq. (12), is given by

|3
g \ omg(e,)
B LD vtey) - agley) —tehe (15)
0, Eml T Xy

Here, from Bgq. (2),

a!d<t)

axi

'ai‘°<t-ri) Ri"’l‘i
and, from Eq. (3),

8,/ 2
ﬁo(t) L] G‘[ayx;n [lf(at+8x/2: Y) b If(at-ﬂx/Z, }”de. (17)

The unknown parameters are not entirely free but subject to
two types of conatraints, The intensity of any target, ay in

phyaically constrained to be non=negative, This constraints can

16
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be released by subatituting bf-tor a. By doing io, nothing is
changed except that the parameter set becomes x = {bl,e;.,b ?

11,..-orn}T and Eq, (16) is replaced by

duglt) | 2PiolE7Ty) Xy =Py

i
i -, & X, =T,
i ot 14

The final estimate 31 can be obtained by lottinq_ai - 312,

Suppose now the sequence of observations, Y. is obtained in

the range from 6,=v/2 to 8,+Y/2 where y is the angular distance
covered by the observations and e° is the central point of the ‘
range. In practice, it can be assumed that the admissible range i.

for Ty cdnt-f o Eho-ith target responsa, is also within this

range, In other words, only targets with center fllllng in’ thil :‘" B
range will be idonfitiod. This additisnal rnnqe ccnltraine will '
be incorporated into the Quaui-Nawton m.thod.

The choice of initial guess is a crucial stap for the Quali- J
Newton method, A good initial guess can lead the ;tnration process
to converging to the oorrcat'ﬁakimum in a relatively small number of
iterations. On the other hand, for a bad initial guess, the iteras -
tion process might converge to a local maximum. osclllate around
o the maximum or not converge at all,

One method for generating the initial guess is the pure ran-

17




dom search. This method consists of computing J(;)* at N random
points drawn from a probability distribution uniform over the
entire parameter space and sslecting the point with the greatest
value of J(1) as the initial guess. If it is aiauméd tha£ each

paramnter can vary between 0 and 100% and, -that -the optimal pnru- :

metar set which correspond to the giobnl mlximum of J(r) 1. to be

located within 10% of each parameter then the probakility o!
locating the optimum in N trials is [9] ‘
- | .
p = le(1=10"1) , (19)

Conversely the numbor of trials required to have a 90% probahility
of locating the optimum im ' o '

oo :
-.":1. ‘:1 T

Obviqully, thp requircd numbcr of trilll incxaannl rapidly with |

the number of unknown paramutarl, n. I1f thore exintl a linglu
target (nm=l) ‘the purn random search' seems ablo to yicld a "gaod“”,
initial guess within a roalonnhlq aomputation timo. Howuver :
for more than one target this mothad bocomon impractical.

A more practical approsch is to uan the pure random 0na:ch

in conjunction with a priori chw;gqga. Al peinhod oue qarliar,

¥For the purpose of melecting an initial guess, Bq. (14) instead
of BEqQ. (12) ie used,

18
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in applying the AIc.ﬁrocedﬁEe”ﬁé»&ééermine the number of targets,
the statiatics AIc(i), i-l, 2,..., ‘are computed in ascending
sequence, At aach step tho 11kolihopd funotion is maximized iter=
atively starting with an initial quess, It leaml feasible to

;-selact the initial guelé of &ho (1+l)th lﬁcp An. luch a way .that

the initial valuel of the first i parametar- are equal to the i
estimates from the previous step and the initial value of the
remaining parameter is chosen from pure random search, Thus, the
iﬂiﬁial-quoll fof any model (number of target) is obtainod by per-

forming a one-pnrameter naarch whiuh is oauior numerically.

This approach guarantnnl that the maximum 1ikolihood function

of the (i+1)th step is no less than that at tho ith

step.
Howaver, if, for the model of i+l targets, the first i cohponontl
of the true optimum in the 1+l paramntor space are far from .the

optimal point determined in step i, the initial. guess. obtained

" in this way s usunlly not "good" for the (.i.+1)th dtep. The

actual implementation of this approach is described in the

appendicen,

19




IV, SIMULATION. nmsvms' ANb b»rscdssxons, N

K
v

; Tha pexformanca of detecting the numbar of targets praaent and
estimating the" parametaru of thele tarqets is evaluated by Monte=-
Carlc uimulation.. Tho uimulqtion qlgorithm has been doncribad in

ey the previous uection And more detaill are given in the appendicol.

In presenting the relultl. some nyltam parameters must be apocifiad.

It is assumed that thc'lignal available to the protessor is obsarved

in an angular range of + 6.3 A/d from the center of the focal plane.

The signal ii'uampfed uniformly in this range at an interval of
+2 A/d. . The total number of observations is 64. The uiqnal is

the broduct of an ‘annular aperture with 350% oblcuration and a

ucanninq photo-detector with in-scan and oross=-scan dimensions

equal to 2 A/d" and 6 A\/d respectively, The number of Monta=-Carlo

runs is fixed at 100 for every case dimcussed in the following.

4,1 _ Detection Perform:ince

First consider the case where at most one target may axist,
One muat decide between two hypotheses) Hot no~target and Hl'
one~targat present, For this case it is only nacessary to compute
AIC(0) and AXC(1), and the decision rule accepts H,(H,) if AIC(0)
(AIC({1l)) im the smaller of the two. The detection performance

e in-scan dimension of the deteoctor is approximately equal to
tﬂe diameter of the blur size (diameter of the first dark ring) of
e P8P,

20
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curve (false alarm rate vs. leakage rate) im shown in PFig, 4.

The false alarm rate (Pf) is the probability af-accepting Hl given
that Hy is true and thae leakage .rate (Pz) iw tholprobability of
accepting Ho given that Hl is true, The parameter d in the figure

is signal~to=nolse ratio related and defined as -

&
am [’%a 8 (tl)] /o (21)

Here o5 is met equal to 1 and a varies among .908, .454, .227 and
+114 for the four curves lhOWh; Each point on the parformance
curve corresponds to one valua of the panalty faotor n in the
AIC defined by Eq. (5). The value of n is establishad by the
actual operating point which is determinad by the requirements

for P, and P

2 £

Now consider the case where there ara two C80's (nw2) sepa~
rated by A9 which is less than or equal to 2i/d (one detector
width), It is always assumed that the two targets are located at
T,#=~46/2 and T, =46/2, and ¢ is equal to 1, fig., 5 shows the pro=-
babilities of ldentlifying correatly, from a given obmervation, 2
targets, P(2), lass than 2 targets, P(<2), and more than 2 targets,
P(>2)., The observation comas from two equally strong targets with
signal-to-noise ratio (SNR*) of 10. The penalty fastor, n is

chosen as 3 hare. The curves shown arc drawn by oonnecting the

¥THe SNR Of a target is defined as the intensity of the target at
the center of ilts pulse shape divided by the RMS of the noise,
The interference noise ims not included.
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Fig. 4. Operation charactaristic curve for the case
where at most one target may exist.
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finite simulation points. The probability of qorrectly 1denti£ying

2 targets is as high as 90% for aeparatidn, A8, of 2A/& (one

detector width), However it is less than 25% for separations

smaller than .5\/d (quarter of the detector width). Tha error

is mainly because the 2 CSO's are identified as a single target.

For separation, A8, between ,3i/d and*k)dy-tﬁitéoéxéat*dogpcgion';”l“;’iE
rate is between 258 and 65%, and mis=-detection ia';ttribﬁﬁgd to .
both under and over identifying the number of tarééto. The data

at no r-paration (A6=0) can be viewed from another angle. At

AB=0, the 2 CS0's are coincident and indistinguishable from a

single target, Therefore, the data indicates that a single target

with SNR=20 has 95% probability of baing identified as a single

target and %% probabllity as 2 Cs80's.,
Fig. 6 illustrates the effect of choosing different values

for thae penalty factor n. It can be seen that using larger values .
of n can increase the doflgtian~rlto for lqurathn'A9>AZd, but, -
at the expense of poo:ailperformanoe for AB<)\/d, ‘There appears to
be no obvious way to ﬁeloct n optimally. This doei not contradict
Akaike's theory because no proof for the optimality of using 2

for n, as proposed by Akaike, has been given., Although not shown
in the figure, it is worthwile to point out that for n=0, P(2) is
equal to 08 for any separation, A8, 1In other words, the numbar

of targets present is never correctly identified as 2 when the

penalty term of the AIC statistics vanishes.
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Fig. 7 shows P(2) as a function of 6 for aeveral different
sets of tafgqt intenlity. The variance of noiiu remainl equal to
1, It is obsexved. that the corraot detcdtion rutc in qonurnlly
higher for gruatcr intenlity excubt_ﬂor the nuddun drop of tha top o

. ourve At Agwd/d, This drqp in Qatiction ratu in dua '£o. the' fact.

that in many of the 100" Monto Carla runa ‘for thie case, tho ini-
tial guess providcd by the. simulatiqn algorithms causes the
Quani-Newton method to oscillate or to converge to a local maximum

for the ZQtarget model but leads t&zh”finallnitimation for the 3~

tarqet-model, which includnl 2 tarqntl clole te thc truo onas and

a third Larget o£ inlignificant intcnlity. Nate that an cxpnrimon-ﬂ
tor=supplied "qood" dnitial guess for the 2- -targat model onn brinq
up the detuction rnte at this point, As to why thc Alqorithm
fails at thiu partioulnr point, no qatilfnqtqry cxplnnltian hnl
been found, oo T Dol _

In Fiq.'5 the true modal haw 2-target with a,=a,m9,08 and
T =1,m=46/2, Suppose the initial ‘guess of the Quasi-Newton pro-
cedure ialaupplied by the éxpcrimunpgr instead of the algorithm

" itself and tho experimentor intelligently selects agula.ls.rg-o'

for the initial guess of the l1~target model, n1°-a§°-9.oa,

rl°--r?°--ae/2 for the 2-target model and alo

0

0
‘ o ] -IZO-Q 05' aa -,]1,
Ty --rz°--A0/a, raoyo for the 3-target model, Thae reaulting de-

tection performance is shown in Flg. 8, A comparison of Figs.

5 and 8 shows that the "good" initial gueasms inoreases the correct
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detection rate significantly. For separations as small as .8)\/d
(two fifths of the detector width) the detection perxformance is
almost perfect. The incorrect detection for even smaller separa-
tions is because only one target is recognized. The chance of
idantifying more than 2. targetl is almost nil in the ontiro ranqo

of separations considered,

4,2 Estimation Performance

The performance of an estimator is usually evaluated in terms
of estimation bias and variance, From the N simulation runs, the

variance of an estimate il,computcd as

) 2
ot i \(x(j) %) (22
®y j-l i)

whare x{j) is the estimate of the parameter Xy in the jth run and
1.§' ($) e
X

is the mean of the estimate., The bias of the sstimate is then
given by

bxi - ."“1 - xi . ' (24)

This sample variance can be compared with the Cramer~Rad
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bound (CRB) which is a lower bound on the variance (or covariance
matrix) of an unblased estimator. In the case of a single target
in additive white gaussian noise, the CRB for the estimation of

parametar vector X can be obtained by

olxy) = (B} (25)
k 08, (t,) By (t,)
Py o= ) —dt 42 ( 26)
Ut w1 9%y axj

where F is the Fisher information matrix, 02 the variance of the
noise and ld(t) the desired signal. A set of discrete observations
is assumed. This bound is usually tight when the signal=to-ncise
ratioc is high,

Figs, 9 (a) and (b) compare the_lquara roots of tha a(xy)
and a:i for the intensity and postion rulpnativaiy, in the case
of two targets with SNR's both equal to 10, The angular separa=
tion between the two targets 1s the control variable. The
simulation is only run at certain values of target separation,.
For the data shown in these figures the detection procedure is
omitted by assuming that the number of targets present is known
exactly in advance. That is to say a 2~target model is always
assumed, The initial guess for this model is provided in twe
different ways for comparison., The first uses the procedure

described in section 3.2 and the second ralies on an "intelligent"
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experimentor who selects the initial value of the parameter in - the

neighborhood of tha true one. - Note that’ since ’1"“2 _and

Sty l=t,]s the concerneﬁ ltatiatias for tha tirlt tarqet should
1 2

be very close to those for the uecond target and BO NO diatinction
between them in made in thiu figuro. _;f${737f' _ ,' ;\7
From Pig, 9, it can- be’ seen that @hen the initial guasu iu  T
provided by the algormthm automatically, the oltimute variance >}
agrees with the CRB very well at target ueparationl of 1, Sk/d,‘
2)/4 and 2.57/d. Recall that tho observed signal exhlbitl two
peaks for separation of 2,5)/d4 as shown in Fig. 3(a), The
sample variance ia significantly larger tﬁgh'ﬁhe CRB for sapara- ,'
tions lnus than 1l,2)\/4., When tha "good" tﬁitial guesses are
employed, the eltimation variance becomes quite clone to the ‘CRB
except at the point whare separation, ADe,B5)1/4, Thil once again
demonstrates thn 1mportanca of the - initial gueli in an 1tnrat1vn
optimization nlgorithm. |
Figs, 10(a) and (b) show the same types of comparison as
that of Figs, 9(3) and (b) for two targets with SNR's both
egqual to 183, similgr~behavtorn are observed, It should be pointed
out the ‘/_C.(.:_)T’a and \GT%T of this example are smaller than thoase '
of the former example by a factor of 1.5, which is exactly equal

to the ratio of the two corresponding SNR's,

¥In the first case, the estimatlon procedure starts with the one=
target model and ends with the two=targat model, In the smecond
case, it ia only applied to the two-target model.
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Based on the same simulation as used in Fig., 9, the biases
and the RMS.qrrors* of the intensity and position estimations are

shown in Fig, ll(a) and (b) . Here the initial guess is generated

by tha eéhimatpr_itlélt. 1t can ba"neén that ;hé és%imatox ise

actually biased igighegrqgion where‘the sample varlance daviaten

" sighificantly from the Cramer-Rac bound, Meanwhile, the intensity

bias, b,, is ralatively small compared to the corresponding sample
standard deviation (roughly by ah order) over the entire C80
region. However, at vaery umdll separation (<lA/d), the position
bias is significant and contripbutive to total RMS error. If

only those runq_in_which_the’numbcr of targets is identified as

2 are used in computing the statistics, the blas, sampla variance

and RMS error can be recued slightly.

*The mean-gquare arror e!_Il the gum of the variance and the

squared hias 02-03+b2.
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4.3 Discuseion

In this simulation study, the pulse shaps of the response of

the photo~detector to a unit-intensity point target is assumed

known exactly in advance. What the detection/estimation processor

%

does 1las to adjust the intensities and'poiitionl:éffh;aortfindf
number of ideal pulse shapes to best matéh this "syntheniiod"
signal with the given observation. If the pulse shape is dif-
ferent from the one assumed in this report due to differences in .
aperture shapes, datector responses, detector configurations
eto,, the simulation program is still applicable as long ams the
pulss shape and its deriﬁativo can be made available; However, the
performance of the detection and estimation proccess may vary
significantly with different pulse shapes,

The algorithm described in thie report is designed to process
the CBO segments rather than the entive observation. ,It'qéeml
feauible to use this algorithm as the second stage of a two-=atage
signal processor which first proceass the original signal to identi-
fy tha imolated "resolved" targets and to separate them from the
potential CH50's., This approach may be quite efflcient computa=
tionally if the probabllity of occurrence for CSO's ls much lower
than that of iﬁolutad targets,

One version of the Quasi=Newton method is implemented here for

the optimization of the likelihood function. Thare exist some

i6
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other methods for this purpose, which can be divided into two
gerneral categories; the random method and the gradient method.
Usually, no single method is best for all types of nonlinear

optimization problems. No evaluation of different methods on the

preéent Cso préblem is undertaken in this raporta-'Howsver~it is

the author's feéling that selecting a particular optimization
method may not be as important as devising an efficient and promis-
ing way to provide the initial guess.

A singlé scanning detector is assumad in this report, Since
this detector can not resolve the cross-scan component of a tar=-
get's position, the targets are assumed to lie along the in-~gcan
direction. To determine the in-scan and cross=-scan positions
of a target, other detaector configurations such as the chevron
(a pair of detectors oriented in different directions) should be
used:

In this simulation study, an additive white guassian noise is
agsumed, This assumption is valid when the thermal noise is the
dominant noiée source in the optical sensor system. However this
noise model becomes inaccurate in the so-called shot~noise limited
case where the noise level is dependent on the aignal (3). Even
for this case, the detection/estimation scheme presented in this
report van apply except that the likelihood function and its
gradient should be reformulated. The mathematics involved is,

of course, more complicated but still tractable,
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V. CONCLUSION -

In this report the detection and estimation problems of -
closely apuéed optichl point targets are studidd using simnlation.

An annular apa:ture of 508 cbacuration Aand s acanninq phatc-detec-

tor with ih“ldln nnd droﬁs-nd&n dimen!iaﬁi equal o ?A/d &ha GA/d,J““'”“':
.respactively, are smployed. The obncrved lignal which originates

from two point targets exhibits a single apparent peak when they

are meparated by less than one deteotor width. To detect and

eutimaté such "uhEésoﬁVéd".targuts, the Akaike inféfmatién

~oriterion and a partiocular maximum likelihood estimator ave

utilized. The dltimator is in fact a nonlinear estimation
algorithm, ) _ _
S8averul examples have heen ukumined. It is found that for

target soparation between 3/4 And 1 detector. width. the corroct

‘datection rate is fairly high, the estimator unbiaued and the

sampled variance close to the Cramer-Rao bound, Howaver, the
detection and estimation performances d?;rade significantly fox
smaller separations, Thie is unavoidable because when the two
targets get closer they becomeé more indistinguishable froﬁ a single
target, particularly in the presence of noise, More importantly,
the difficulty in providing algorithmically a "good" initial guess
for the estimator contributes to the poor performance. Un=
doubtedly, the performance of the algorithm can be improved if a

more intelligant way of choosing the initial guass can be devised.
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1deé¢ribéd in section 3 in order to similate the detéction/estimation
~the, particular implementationl adoptnd.

: speéifiéd more carefully, The top-level flow charts and details

APPENDIX Ai__COMPUTATIONAL ASPECTS
Programs have bqén written in dccordapce wi;h_tha principlea

:procassor. Th@ parformancu of ‘the prooonwor il aloaely related tu

Therafore, befors ‘present-

ing the qimulqtzon results, the program actually used has to be

of some subroutines are given in this the following append;peq;

_A,.l Top=level Flow Charts

For practical reasons, the simulation is done in two steps
hy two different main programs, The first one (TABLE) is used - SRR B
to ¢reate the standard pulse shapes of 5, (t) and l () in advance |

for use in Lhe second one (CSOMCS) which is the praqxam porfprminq . t'hfi
detection and estimation. : ' R

v}

The top~level flow charts of these two programs axo:depiéted:
in rigs., Al(a) and (b) respectively while thcié liltinqs are given

in the appendix, In these charts the functions of qgmg“blbokl_ o SRR
ace implemented by subroutines, The names of these subroutines ~ j
are put down beside the asscciated blocks., Scme cﬁ'%him'wilr ke yr'l  I

further explained in the following subsaations, Nota thnt the 5-_,- =

detection statistics are the output of the flow ehart Ln Pig, Al. e
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It can be modified sasily to yield the estimation statistics.

A.2 Quasi-Newton Method

There are several versions of the s0 called Quasi~Newton

method [8]. One partioular version has been written by Dr, R, W

Miller in thae Laboratory. This version is modified here to meat
the reguirements of the pPresent limulugion_ltugy. Thc procedures

are as follows:

Step 1l Set k=0; read in the initial parameter values, 59,
and the number of targets, n.

step 21 Compute J(x?) and v7(x’) according to Eqs. (12),
(15) and (18)., Pind n° by inverting the matrix

6"(1,9) = %[s.g‘.i.(xg,...,xgm, "g*‘l""'xgn)'s%f'(!o)] 1,3%1,2,004,2n

whete d illurfi#oéipigtgnggﬁén; 1t a? is unin-
vertable, Holiq‘ohonih as a dlagonal matrix with

10(4,4) w &/] |02 (x0 ||

where ||¢|| is the Buclidean aorm,

Btep 3t Compute the incremant of 5&.

ax®

x* = w5 (")
and its size,

o= ||ag*|].
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L et

Step 4:

Step 51

Step 63

If ¢ is less than a preset oten size o, go to
step 4, Otherwise, multiply Agﬁ with a/c and set
o= a,

COmpute the increment of J(xk),
: -'-"A:'(s_'ej‘) EN AR AT
If AJ(EF) is positive, go to step 5. Otherwise,
replace Ag} with
" é VJ(§#)
A" M B
| 193(x™) ||

where 8 is a preset number,

Update X

k+l_£ﬁ+A§} )

Apply the range conatraints, -§ SR+ g §,

k+l

j-l'ooupno !‘or any j' if |xn+j| < q° to atep 7.

Othexwise, nct

L k+l ¢ =k
Sl ? Xnq b3
n+j
r k+l s £
7 Hnei
and
3 k+1 k
Apuq ™ Bpad = Xpayo
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Recompute the magnitude of the increment,
o= ||ag®|

Step 71 Compute .| +1), vr(x**l) ana

T, ,
- (agR ey Ry ok e L

(ax®) " Bk
provided the denominator is not egual to zero.
Here,

g% m va ) - va ),

Step 81 It c ¢ Cqr the iteration converges and 5? is the
desired estimate. B8top. Otherwise proceed, Note
that o is the threshold value of the stop oriterion,

Btep 9 If k < ko' set k = k+l and go to.step 3, Other=
) wil., proceed to the !ollewing step. Heze,: k is
‘4 preset vnluu for the maximum number of 1ternt1¢nl.

Step 10: Among k itcrntionu find thc one which has the
qrultclt value of J(ﬁ )+ Take the estimate of this
iteration as the final estimate. Then stop.

The above procedures are implemanted in subroutines QNEW and
ITERAT, The necessary constants are preset for the simulation as
d = .005, u=.5 8=.,15 o, = 10", and k, = 50.
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A.3 Computaticns of s (t) and iott)

The Quasi=-Newton procedure requires, itfaaah'itaratioﬁ, the
computations of J(x) and VJ(x) which, in turn, roquiron thoso of
5, (tg=1y). and 8. (tz-ri) for z-l 2,.‘.,k nnd i-1;2;aa..n. T
vary time-consuming to direotly oarxy out, for overy itexation,
the associated lingih and double intuérqlu.-'Althouqh the ocﬁputa~
tion time can ba reduced significantly by using the high-speed
convolution method, it is still quite noticeable. An altn:native
approach is to compute in advance lamplcgrof-la(t) AnQ.io(ﬁl_nl g
woli as their spline coefficients, and store them inifiloi: At
the baginning of the simulation, those data are first :atriovod
and later on, whenever needed, s (t,=t,) and "(tz'Ti) can be
compultmd by simple interpolations which tnkc almout no timn.. ¢
the nunbex of ltorad samples 1- large onough, th. intarpolation
would provide sufficlent acouracy. '

Bince s(t) and l (t) would be only aomputod once and off-line
the computer time required is not coritical., They are computed by
directly carrying out the double and single intergrals of Bgs. (3)
and (17) using the Gaussian=Lagendrs guadrature formula (10, 1l1l],
This formula giveo fqr the single intagral,

. |
1 -j; £ (u)du (A1)
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the following approximation

g Rl ) e

where the weights A{n) and abscissas xf“) can be found from a

standard mqthlmgtidqiftubicAﬁzThu formula is_exsdt whansver £(w)

is a polynomial of degree < 2n~l. The double integral of the form

b . ylu)
I = £(u,v)dudv. (Re3)
fa /¢<v.) '

is approximated by

2

iml F] 1

with (R, 4)
- Byt afr) + By

Here, both n and m arae ahoﬂan equal to0 16 for the currant ﬂpplioa-
tion, which is shown experimentally to be sufficient. Two sub-
routines QMULT2 and QMULTL1 have been written for this purpose,

The spline coeffigients used to intorpolntc the set of pointa
from 8, (t) (or &,(t)) are computed from the Quasi-Cubic Hermite
splines [12]. The cublic spline :cprunontinq‘thn function between
each pair of given points is dcterminod by tﬁo eoorainatnl and
slopes at the two points. The slope at vach point is determined

i6

n , .
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locally by the point in question and two points on its each sidae.
The resulting curve passes through all the given points, The
subroutine IQHSCU which is available in the IMSL package (13] is
employed for this computation. The uubrdutinn 88DOT called by

the simulation main prcgram performs the necessary intnrpolationl L

to yiold vnlucl of ld(t2> (Bq. (2)) and ald(tz)/Bxi (Bq. (16)),
for iml, 2,..4)k and iml, 2,.4s,2n given any a and 1. Uasing the
output of S8DOT the subroutine JFCN dompuﬁel the desired J(g) and
VI () '

A.4_ Choice of Initial Guess

The subroutine IC is employed to provide the initial guess
for the Quasi=Newton procedurs, The aliéuiatad prinoipal logio
has been described in subsection 3, é. In. this uﬁblnation. the
details of the program and the flow chnmt ars qivnn. ' co

At the (1+1)th step of the AIC procoduro. the initial ‘guesses
of the first i targets are set equal to the ultimltcl from the 1th
step and the initial quell‘tor the (i+1)th tnréct iu.tound through
the pure random search. Frem Bq, (12), it is clesar that max-

imizing J(x) is equivalent to minimizing the :oliowing funaﬁibn

k. i 2
rpl =™ z:);'l[}"“"t), - FlajBO(tz...Tj)]. . (AnS)
over Qj and ij j'lpnoo}i*lo
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Since aj and Tj. Jwl,eeesd, are already fixed, it also becomes

equivalent to minimizing

2
4.2 - %[Y-l(tl) - ai_'_lao(ta-T“_l)] (A.6)

'69;2 ai+1;anthi¥iy ﬁhdro'
Yl(tz) - y(t£> - ;2£ajo°(tz-rj) (Ae?)

is the residue of y(t) after being fit by the fixed i tar-
gets, Further assums that ('L¢1' 11+1) lies on the ocurve imposed
by o

30, .o
Ta '

i.‘l'
: K |
Y om (=, 4 )Y (E,)

Biel. K, ~— .
. E Bo (tz-Ti_}.l)

fm)

This leaves Tiel the only parameter to he searched f£or the min=-

imization of ¢2. The number of random trials in searching for

Tiel is selected egual to 50 in the program, The flow chart ims

shown in Fig. A2,

FEQ. (ACE) Ia the same as ¥q. (13) with nwl,

(A.8)




s e

ENTER

}

asume (i+l) targots present,
Input the giver observation,
« Input, from tha previous
step, the estimates a, and xj
dmly04s i) and the residual
sum aquare ¢,. Read in the
unbesr of rnﬁdom ssarch, IT

7sue‘ngau"; 1°-é5‘jh1,;..1;
Set ¢, =¢,. Compute y, accor-
dina to o (27), ;

3=l

andonly pick a value for = -
within the admissible re 10*.

RETURY

Pig. A2. Flow chart of the initial-guess
genarating subroutine.
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APPENDIX B: PROGRAM LISTINGS

The whole simulation algofithm is composed of two main pro-
grams, TABLE and CSOMCS. The impdrtant input and cutput variables
as well as the listings of thesde programs are givcn in this nppen-
dix. As for the dotailad 1ogio of the algorxthm. roadcru lhould
rafer to the context of the report. The comments incorporated in

the program will be also helpful in understanding the prbgram.

Important Variablos

TABLE:

Ip =  indicator of the type of aperture; ) for square
aperture and 2 for annular aperture

E = obscuration factor of the annular aperture; 0<E<]

ANGLE w». orientation of the detector, lpcciziod by the anglu

(degres) between the central . linc of the detactor and '

the ocross«scan direction; 0<ANGLE<S0.,

NPOINT = number of points where values of so(t) and éo(t) are

somputed

TOELTA = interval between a pair of successive points in units
of az/d

TBEGIN = position of the first point, equal to (NPOINT=1)
*TDRELTA/ 2

ARG w array conkaining positions of the NPOINT points

VAL1 m array containing the corresponding NPOINT values
of 'o(ti)
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FILEN

VAL2 = array containing thé NPOIN@JV§1ueﬁ'of'i olty)
SPLIN1

array of dimension NPOINTX3, containing the apline
_coefficientl of 8, (tﬁ) g h'ﬁ:.." .

SPLIN2 = array of dimension NPOINTx?. oontaining the spline 3

couffiaiontn‘of

name of the fileVWhlch koapl thé’nééiuaaryfdd;i

(FILEN, TBEGIN, TDELTA, NPOINT, ARG, ‘VAL1, VALZ,‘
SPLIN1 and SPLIN2) for use in the. limulation proqram
C80OMCS

CSOMCS v

PILEN, TBEGIN, TDELTA, NPOINT, ARG, VALL, VAL2, SPLINl,-
SPLIN2 as defined above for the program TABLE

The folJowing parameters ars npqcifigd in order to genarate
artificial noisy signal. '

AL

IX - w  gaed of the randdm'number'ganoratoy

NLOOP = number of Monte Carlo simulation runs

NTO = number of targets present

NS = number of samplea |

DT - simpling i#t:rvﬁl

AMP = array containing intensities of the NTO targets
51
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THETA = array containing positions of the NTO targatl'

8D ~ standard deviation of the WGN

BT . = pomition of tha first sample, egual to (NS=1)+DT/2

"+ --'The"following parateters are udad in the détection/estimation

procedures?

NT " = number of targets assumed

N

%

= total number of free parameters, egqual to 2xNT

— jVoctor'éfﬂi;hqth N, -The intensity and position
estimates of the Lth
X(L4NT) | -

T st

'“nMa,muwmnm.wwﬁfiigémupper bound of the number of assumed target

. JRERTELE

ETA " = value of the AIC penalty constant. -

AIC = ‘value of the Akailke information driterion

| 88Q = value of J(x) in Bq. (12)

m .
. @
o
L=
g

o
W oo e e e A o - L sy
g Y

- value of 58Q under the assumption that no target pre-
‘sent ' :

.. ™ vector of length NS contalning values of sg(t) taken
in the N8B points
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SDoT

XBAR

XVAR

ICOUNT

EPS

LIMIT

ITRL

Listings

i

vector of length NSxN containing partial derivatives
of s4(t);

Feseyp ’ goecey '——'—a are
9a) dayy 9Ty TNT

stored sequentially in the locations beginning at
SDOT ( (2-1) *N+1)

e L

vector containing mean values of the estimates in all
the models assumed

vector containing variances of the estimates

array whose ith element containing the probability of

identifying i targets

smallest increment used in convergence test (for
ONEW subroutine)

allowed largest number of iterations (for QNEW sub-
routine)

numbex of the random searches used in subroution
IC for choosing the initial guess '
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MAIN TABLE

-~~ DESCRIPTION?
THIS FROGRAM COMPUTES AND STORES THE OPTICAL PULSE SHAPE AND

ITS FIRST DERIVATIVE W.R.T. ANGULAR POSITION FOR FUTURE USE.

TIE SINOLE INTEGRAL OF EQ.(17) 18 EVALUATED BY USING OAUSS-~

LEGENDRE FORMULA. SUBROUTINE GLO1é PROVIDES A TABLE OF THE 1é6-
POINT GAUSS-LEGENDRE FORMULA.

THE DOUBLE INTEGRAL OF EQ.(3) I8 COMPUTED USING THE SAME METHOD.

EXTERNAL FCNsFUP»FLO(FCT

ROUBRLE PRECISION DX(146)sDA(16)

DIMENSION X(16)s A(16)» FILEN(3)

DIMENSION UAL1(1024)-UAL2(1024)vhRB(1024)vBPLIN1(1024v3)vSPLIN"(

21024,3)

COMMON /PSF/ IP+E /DETOR/ CENTERsANGLE+BETAX
WRITE(6010)

FORMAT(//10Xy X% TARLE %XXX’//)

WRITE(6920)

FORMAT(1X» "READ IN FILE NAHE')

READ(5,30) FILEN

FORMAT (3A4)

WRITE(6+40) FILEN

FORMAT(1X¢ ‘FILE NAME=‘’y3A4)

TDELTA = ,025

NFOINT=1024

RANGE = (NPOINT-1) x TDELTA

TBREGIN = -~RANGE /2.

BETAX = 2,

BETAY = &,

BETAYH = BETAY/2.

BETAYL = -BETAYH

WRITE(6950) '
FORMAT(1X» ‘READ IN IP:! 1 FOR RECTANGULAR» 2 FOR ANNULAR )
READ(S.%) IP

WRITE(4+60) IP

FORMAT (1X»‘IP= “y12)

IF (IP +EQ. 1 ) GO TO 80

WRITE(6963)

FORMAT(1X»’ READ IN OBSCURATION FACTOR ‘)
READ(S»x) E

WRITE(6970) E

FORMAT(1Xs’ E= ‘yF4.,2)

WRITE(6990)

FORMAT(1Xs ‘READ IN DETECTOR ANGLE(DEGREE)’)
READ(Ss%) ANGLE )

WRITE(4»100) ANGLE

FORMAT(1Xs 'ANGLE=’vF6.2)

C OBTAIN THE GAUSS-LEGENDRE WEIGHTS

c

110

CALL OLO16(DXsDAr-1.,D0r 1.D0 )
DO 110 I=1,16

X(I) = DX(I)

A(I) = DACD)

MH = 16

c
C COMPUTE THE PULSE SHAPE,VAL1 AND ITS8 DERIVATIVE VAL2

c

DO 120 I=1,)NPOINT
CENTER = TBEGIN + TDELTAX (I-1)
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ARG(1) = CENTER
VALL1(I) = QMULTI(FONsBETAYL»BETAYH FUPsFLOsXrArMM)
VAL2(T) = QGMULTIC(FCT,BETAYL)BETAYHs XrAsMM)
120 CONTINUE
c
€ COMPUTE THE SPLINE COEFFICIENT OF VAL1. SUB IQHSCU IS IN IMSL.
c
CALL IRHSCUCARGsVALI1»NFOINT»SPLINI »NPOINT»IER)
COMHUTE THE SFLINE COEFFICIENT OF VALZ.
CALL IGHSCUCARG,»VAL2/NPOINT»SPLIN2/NPOINT»IER)

WRITE OUT THE DATA

anon o BeRe]

WRITE(45130) TREGINyTOELTAINFOINT
130 FORMAT(/1X»2E14.7,18/)
RO 150 I=1yNPOINT
WRITE(6r140) IsARG(I)»yVALLI(I)»VAL2C(I) ¢y (SPLINI(IyJ)rJ=1y3) s (SPLIN2(
21,00 J=143)
140 FORMAT(1X»IS»2X»9E12,5)
150 CONTINUE
c
C STORE DATA UNDER THE GIVEN FILE NAME
C
WRITE(B8r160) FILENyTBEGIN» TDELTAsNPOINT
N0 170 I=1,NPOINT
WRITE(By180) ARG(I)»VALL1(I)sVAL2(I)»(SPLINI(IsJ)r»J=1+3)y
1 (SPLIN2(I»J) v J=1,3)
170 CONTINUE
160 FORMAT(3A4»2E14.7+16)
180 FORMAT(PE14.7)
STOP
END

Cx FUNCTION QMULT2
c
C COMFUTE THE DOUBLE INTEGRAL S5 F(X»Y) DXDY» AA.LE.Y.LE.BB,
C FL(Y)L.LE.XLLELFUL(Y)
c
FUNCTION GMULT2(FCNsAAsBBrFUrFLYXrArMM)
DIMENSION X(1)rA(1)
H1 = (BR-AA)/2.
G1 = (BR+AA)/2,
Q1 = 0,
D0 4 I=1,MM
UI = H1ixX(I) + G1i
Al = H1XA(I)
D = FUKUID)
C = FL(UD)
H = (D-C)/2.
G = (D+C)/2,
Q= 0,
DO 2 J=1oMM
VJ = HxX(J) + G
Q= a0+ A(d) ¥ FCN(VIHUD)
Q1 = Q1 + AIXHXQ
aMuULT2 = Q1
RETURN
END

>R

55



Et FUNCTION FCN

C COMFUTE F(X»Y) WHICH IS USED IN GMULT2
c
FUNCTION FCN(XrY)
DOUBRLE FRECISION MMRSJ1,DR
COMMON /PSF/ IP»E
SCALE = 3.141593
GO T0 (10,20)y1IP
10 IF (X .EQ. 0.) GO TO 32
X1 = X x SCALE
FX = (SIN(X1)/X1)%%2
GO To 36
32 FX=1,
36 IF (Y .EQ. 0,) GO TO 42
Y1 = Y% SCALE
FY = (SINCYL)/Y1)x%2

GO TO 44

42 FY =1,

44 FCN = FXXFY
RETURN

20 R = SRRT(X%x%2 + Yk%k2 ) %SCALE
IF (R .NE. 0.) GO TO 50
FCN=1,

RETURN

S0 DR=R

c

C MMRSJ1 COMPUTES THE BESSEL FUNCTION OF FIRST KIND('EXISTING IN IMSL.
c
RJ1=MMBSJ1 (DRy IER1)
IF(E.EQ.0,) GO TO 40
DR=RXE
BJ2=MMBSJ1 (DR IER2)
GO TO 70
60 IER2=0
BJ2 = 0.
70 IF (IER1 .NE. O .0OR, IER2 .NE., 0) GO TO 80
TEMP = 2,/((1.,~-EX%X2)%R)
FCN = ((BJ1 -~ EXBJ2) XTEMP)XX2
RETURN
80 WRITE(6¢%0)
9?0 FORMAT(//10X»’ SUBR MMBSJ1 ERROR )
CALL EXIT
END

x FUNCTION FUP
THE UPPER ROUND USED IN QMULT2

[z XeXeNy)

FUNCTION FUP(Y)
COMMON /DETUR/ CENTER(ANGLEsRETAX
'FUP = CENTER + BETAX/2.
IF(ANGLE.EQ.0,) GO TO 10
FUP=FUP+YXTAN(ANGLEX,01745329)

10 RETURN
END
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X FUNCTION FLO
THE LOWER ROUND USED IN QMULT2

aooon

FUNCTION FLOCY)
COMMON /DETOR/ CENTER»ANGLEr»BETAX
FLO = CENTER - BETAX/2.
IF (ANGLE.EQ.0.) GO TO 20
FLO=FLO+YXTAN(ANGLEX.01745329)

20 RETURN
END

Cx FUNCTION QMULT1
c
C COMPUTE THE SINGLE INTEGRAL 8 F(Y) DY
c
FUNCTION QMULT1(FCTsAAsBBsXrAsMM)
DIMENSION X(1)rA(1)
Hi=(BB-AA) /2.
Gi=(HB+AA) /2,
Q1=0,
DO 4 I=1vsMM
UI=H1%xX(I)+G1
Al=HiXA(I®
4 Q1=Q1+AIXFCT(UI)
QMULT1=Q1
RETURN
END

Cx FUNCTION FCT

c
C COMPUTE F(Y) WHICH IS REQGUIREDRD BY QMULT1
c
FUNCTION FCT(Y)
COMMON /DETOR/ CENTERsANGLEsBETAX
X=CENTER
IF(ANGLE.EQ.0,) GO TO 30
X = X + YXTANCANGLE X .0174532%)
30 X1 = X + BETAX/2.
X2 = X - BETAX/2. .
FCT = FCN(X1rY) < FCN(X2+Y)
RETURN
END

Cx SUBROUTINE GLO16

c

C FPREPARE COEFFICIENTS OF THE 14-FOINT GAUSS-LEGENDRE FORMULA

c

SUBROUTINE GLO146<(XsArCrD)

DOUBLE PRECISION CrDeX(1)sA(1)9XX(8B)rAA(B)

DATA XX/
+989400934991649932596154173400
+94457502307323257460779884155D0
+8635631202%878317438804678977N0
«7554044083550030338951011924800
1617874624440264374844646717640D0
+458016777657227306342419442900
+20146035%0779258913230440501400
+9501250983763744018531933542D~1 /

- w e w www

o % 2606 20 0000 NS
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DATA AA/

1 271524594117540946851780572450-1»
162253523938647892646284303499D-1»
+9315851168249278480992510760D~1
+12446289712555338720524762821D0
+14956598881465767320815017305D0
+1671565193950025381893120790D0
+182603415044923588066746364679D0
+18945041045506B49462853967232D0

DMC = 5DOX (D-C)

OPC = ,50OX(D+C)

Do 2 1=1,8

NI = 17-1

X(I) = -DMCxXX(I) + DPC
X(NI) = DMCXXX(I) + DFC
ACI) = DMCXAA(I)

A(NI) = DMCXAA(I)
RETURN

END
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MAIN CSOMCS

=== DESCRIPTIQN!?

THIS PROGRAM IS A MONTE-CARLO SIMULATION OF THE_INTENSITY AND ANGU
LAR LOCATION ESTIMATION OF CLOSELY SPACED OPTICAL TARGETS.

A SET OF ARTIFICIAL OBSERVATIONS ARE FIRST GENERATED FOR A GIVEN
CONFIGURATION (NO. OF TARGETS: INTENSITIES AND LOCATIONS).

USING THESE DATA AND ASSUMING NO. OF CS0‘S» A GAUSI-NEWTON ALGORI
THM IS EMPLOYED TO SEARCH FOR THE PARAMETER SET WHICH MAXIMUMS THE
LIKELIHOOD FUNCTION.

THE MEANS AND VARIANCES OF THE ESTIMATES ARE ALSO COMPUTED.

AKAIKE INFORMATION CRITERION IS COMPUTED FOR VARIOUS MODELS.

INTEGER ICOUNT(3)

REAL%X4 AMFP(4)sTHETA(4)rX(B)»S(64)s5D0T(512)

REALX4 XBAR(20) s XVAR(20)sAML(100»5) »DUM(B8) » TH(10) »FILEN(3)

COMMON /DATA/Y(44)¢NS»STD /SAMPLE/BT:DT /WORK/SDOT

COMMON /SFLINE/ TBEGINsTDELTAsNPOINTrARG(1024)sVAL1(1024),VAL2(102
1 4)sSPLIN1(1024+3)»SPLIN2(1024+3)

WRITE(6010)

WRITE(6520)

FORMAT (/5X» / XKXKEX RESULTS FROM CSOMCS XKXkK’)
FORMAT(10X» CS0 MONTE CARLO SIMULATION’)
WRITE(6:30)

FORMAT(14X» “WGN (STD UNKNOWN) ‘)

READ IN STANDARD FULSE SHAPE FROM THE FILE WHICH HAS BEEN CREATED BY
PROGRAM TABLE.

READ(8,50) FILENsTBEGIN» TDELTAsNPOINT

DO 40 I=1,NPOINT

READ(Br460) ARG(ID »VALLI(I)»VALZ(I)» (SPLINI(Ivd)rJI=1+3)y
1 (SPLIN2(Ird)rJ=1+3)

CONTINUE

FORMAT (3A4»2E14,7,16)

FORMAT(9E14.7)

WRITE(4+70) FILEN

FORMAT(/12X» ‘FILE NAME!’r3A4/)

WRITE(4rXx) TBEGINsTDELTAsNPOINT

DO 12 I=1,NPOINT

WRITE(&r13) TrARG(I)»VALI(I)»VALZ(I) v (SPLINLI(IrJ)r =13}y
S(SPLIN2(I+J)»J=m1,3)

FORMAT(1XyIS»9E12.4)

CONTINUE

WRITE(c 80}

FORMAT(1X’ENTER THE PENALTY CONSTANT OF AIC’)
READ(S+Xx) ETA

WRITE(4,90) ETA

FORMAT(2XsF5.2)

WRITE(6,140)

FORMAT(’ ENTER SEED FOR RANDOM NUMBER GENERATOR’)
READ(Sex) IX

WRITE(6+150) IX '

FORMAT(3Xr19)

WRITE(6+140)

FORMAT(1Xr’ENTER NO. OF MONTE-CARLO LOOPS’)
READ(S»%) NLOOP

WRITE(62170) NLOOP

170  FORMAT(3Xr14)
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WRITE(4»180)
180 FORMAT(’ ENTER DATA TO GENERATE ARTIFICIAL SIGNAL!’/
1 SXs ‘NToNSeDELTA+AMP(NT) » THETA(NT) »8TD’)
READ(S»X) NTOsNS»DT» (AMP(I)sIm1sNTO)» (THETA(I)»I=1»NTO)»8TD
WRITE(42190) NTO!NS»DT»(ANP(I)»Im1sNTO) 7 (THETACI)»I=1,NT0)s8TD
190 FORMAT(1X» I3+ I5»9F8.2)
BT=-(NS-1)%XDT/2.
NM=NTO+1
NM2=0
DO 200 I=1,NM
200 NM2=NM2+I%2
DO 210 I=1i,NM2
XBAR(I)=0,
210 XVAR(I)=0.
NMi=NM+1
DO 220 I=1,NM1
220 ICOUNT(I)=0
EFS=1,E-5
LIMIT=30
ITRL=30

c
C SIMULATE NOISELESS OBSERVATIONS
c
CALL SSDOT(NTOs»AMP» THETA+S8»SDOT»NS»0)
, WRITE(6,230)
230 FORMAT(/’ ESTIMATION STARTS! )
DO 400 NL=1,NLOOP
WRITE(62240) NL»IX
240 FORMAT/1Xy» ‘NLOOP=’ 9 I495SXy ' IX=’y]110)

c
C SIMULATE ARTIFICIAL NOISY DATA
c
DO 250 I=1.NS
SMEAN = 8(I)
CALL GAUSS( IX+STDsSMEAN»Y(I))
2350 CONTINUE
c

c COMPUTE SSQ AND AIC FOR NT=0
88GN=0.,
DO 260 I=1ivNS

260 SSAN=SSQN-Y (I)%%2

c

C VARIANCE OF THE NOISE IS UNKNOWN

c
AIC=NS83ALOO(~-B8EAN/NS)
c .
C VAxkIANCE OF THE NOISE IS KNOWN
c AIC=~8SAN/STDX%2
c

WRITE(69270) SBQGN,AIC
270  FORMAT(1X»’8BAN=’'»E15.6+35Xs'AIC=’1E15.6)

c

c APPLY THE AIC PROCEDURE

c
NT=i

280 N=NT%2
WRITE(69290) NT

290 FORMAT(12+’~TARGET MODEL$‘)
CALL IC(X/Ns88Q,IX»ITRL)
WRITE(6,300) (' I)»ImiyN)

300 FORMAT(1Xs/IC: (BE12.4)
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c
C USE Bu%2 FOR A 80 THAT B I8 NOT CONSTRAINED TO BE POSITIVE

DO 310 I=i,NT
310  X(I)=8QRT(X(I))
CALL GNENT (XsNrSSQeEPS+LIMITyITERsIER)

Cc
€ RESTORE A=DPxx2
c
DO 320 I=1,NT
320 XCI)=XCI) %2
CALL ORDER(XsN)
WRITE(49330) (X(I)rI=1lsN)
FORMAT(2X» ‘ESTIMATED PARAMETERS!’»8E12.4)

o
(=4

VARIANCE IS UNKNOWN
AICNT=NS*ALOG(-SSQ/NS) + ETAR(2ENT)

VARJANCE IS KNOWN
AICNT=-8SSQ/STDER¥2 + ETAX(2ENT)

o000 N0NoOW

WRITE(6+340) S8GrAICNT,ITER
340 FORMAT(2X» ‘S8Q= ‘vE14.695Xy AICm’9yE14.693Xs ' ITER.=’»14)
IF(AICNT ,GE. AIC) GOTO 3460
AIC=AICNT
DO 350 I=1+N
350 DUMCI)=X(I)

NT=NT+1
IF (NT .0T. NM) GO TO 340
G0 TO 260

c

€C UPDATE THE COUNTER

c

360 ICOUNT(NT) = ICOUNT(NT) +1
IF(NT .EQ. 1) GO TO 400
c
C KEEP DATA FOR COMPUTING SAMPLE MEAN AND VARIANCE OF THE
C ESTIMATED PARAMETERS
c

K=0Q

D0 370 I=2,NT
370 K=K+(I-2)%2

N=(NT-1)%2

DO 380 I=isN

XBAR(K+I)wXBAR(K+I)+DUM(I)
380  XVAR(K+I)=XVAR(K+I)+DUM(I)%%2
400  CONTINUE

c
C COMPUTE AND OUTPUT SIMULATION STATISTICS
c
WRITE(6+410)
410 FORMAT(///1X’8TATIBYIC8’)
NT=0
WRITE(61420)

420  FORMAT(2Xr’0-~TARGRT MODELS$’)
PCT=100.8ICOUNT(1)/FLOAT (NLOOP)
WRITE(4+440) NT»PCT
K=0
DO 490 NT=1,NM
NsNTR2
WRITE(4+430) NT

430 FORMAT(/1X+12+’~-TARGET MODEL?’)
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COUNT=FLOAT(ICOUNT(NT+1))
PCT=COUNT/NLOOPX100.

WRITE(&49440) NT/PCT
FORMAT(3X» 'PROB( ‘v 119/ )m’sFbe20°%’)
IF(PCT.EQ.0.) GO TO 480

DO 4350 I=1+N

I1=K+1

XBAR(I1)=XBAR(I1)/COUNT
XVAR(I1)=(XVAR(I1)~COUNTEXBAR(I1)X%2)/COUNT
XVAR(I1)=8QRT(XVAR(I1))
WRITE(6»460) (XBAR(K+I)rI=i,sN)
FORMAT(3Xs "MEAN? " »B(1XrE12.4))
WRITE(69470) (XVAR(K+I)»I=1sN)
FORMAT(3Xs STD! “vB(1X»E12.4))
K=K+N

CONTINUE

CALL EXIT

END

SUBROUTINE QNEW
SUBROUTINE GNEWT(XsNsXJsEPS)LIMIT»ICONT»1ER)

THIS SUBROUTINE IMPLEMENTS QUASI-NEWTON METHOD TO FIND A MAXIMUM OF
A FUNCTION. '

X3 INITIAL QUESS(INPUT)S LOCATION OF MAXIMUM(OUTPUT)

N! DIMENSION OF X '

XJ! VALUE OF MAXIWmus ‘OUTPUT)

EPS! SMALLEST INCREMENT USED IN CONVERGENCE TEST

LIMIT: MAXIMUM NUMBER OF ITERATIONS

ICONT! NUMBER OF ITERATIONS

IER! ERROR CODE

REQUIRES A SUBROUTINE JFCN{(X/N»XJrDJ) WHERE

X1 ANY POINT IN THE PARAMETER SPACE

N! DIMENSION OF X AND DJ

XJ: VALUE OF THE FUNCTION AT X (OUTPUT)
DJ! GRADIENT EVALUATED AT X (OUTPUT)

DIMENSION X(1)+DJ(B)»DJ1(B)s»X1(B)
DIMENSION B(Bs8)»BIC8yB8)»FI(51)sFX(51:8)
COMMON/MAINL/NDIM/INOUT/KINyKOUT
COMMON/PARAM/Sy D8y DSMy IOUT

MAX(NI=8y FJI(LIMIT+1)» FX(LIMIT+i'N)
/MAIN1/ AND /INOUT/ ARE LINKED TO GMINV SUB.

NDIM = 8
KIN = 5
KOUT = &

FOLLOWING CONSTANTS ARE USED TO CONTROL NUMERICAL PROCEDURES OF QNEW
8! INITIALIZATION PERTURBATION
D8t INCREMENT UBED WHEN NOT NEAR A MAXIMUM
DSM3 LARGEST INCREMENT ALLOWED
I0UT=PRINTOUT CONTROL

10UT=1
82,003
DB=, 1S
DBM=,5
1ER = O
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DO 10 Iw=iN
10 FX(1oI)mX(I)

CALL JFCN(XsN»XJOrDJ)
FJ(1)=XJo
IF(IOUT.GE.1) WRITE(6+20) XJO

0 FORMAT(1X» ‘SSQ0=’»E13.6)
INITIALIZE B

oOooNn

DO 40 I=1,N
DO 30 J=1sN

30 X1¢J) = X(J)
X1(I) = X(I) + S
CALL JFCN(X1sN2XJsDJ1)
DO 40 J=i,N
40 BICJryI) = (DJI(H-DI(J))I/8
CALL GMINUV(NsN+»BIr»BsMR+1)
IF(MR.LT.N, GO TO 40
DO S0 I=1,N
DO S50 J=1.N
50 B(IsJd) = =-B(1l:J)
GO TO 100

ALTERNATE INITIALIZATION

0N 0n

0 nJH = 0,
DO 70 I=1sN
70 DJUM = DJM + DJICI)m%2
DJM = 8/8QRT(DJM)
DO 90 I=1sN
DO 80 J=1N
80 B(IrJd) = O,
90 B(IrI) = DJM
c
c ITERATE TO SOLUTION
c
100 PO 130 ICONT=1,LIMIT
CALL ITERAT(XeBsDJsXJrDXNsN»IR)
ICONTI1=ICONT+1
FJCICONTL)=XJ
DO 110 I=i,N
110 FXCICONTY»I)mX(I)
IF(IOUTJBE+3) WRITEC69120) ICOUNT»XJs (X(I)sInm1isN)
120 FORMAT(1XyI4+2E12.494E12.4/(29Xv4E12,4))
IF(IR.NE.O) GO TO 130
IF(DXN.LT.EPS) GO TO 190
130 CONTINUE .
IF(IOUT.GE.1) WRITE(4,140) LIMIT

IER = 2

140 FORMAT(2X» 'NO CONVERGENCE IN‘sI4»’ ITERATIONS’)
B0 TO 160

150 IER=3

1460 XJ=FJ(1)
KMAX=1

DO 170 I=2+ICONT1
IF(FJ(I).LE.XJ) GO TO 170
XJuFJ(I)
KMAX=I

170 CONTINUE
DO 180 I=1isN

1680 X(I)=FX(KMAX?I)
RETURN
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190 IF(XJ.BE+XJO) RETURN
1ER = 1
IFCIOUT.GE.1) WRITE(6+200)
200 FORMAT(1X’NOT GLOBAL MAXIMUM’)
RETURN
END

Cx SUBROUTINE ITERAT

[
C CALLED BY GNEW
Cc
SUBROUTINE ITERAT(XsBsFsXJrDXNsN2IR)
DIMENSION X(1),B(8s8)+F(1)esDF(8)sDX(8)»BF(8)+»DXB(B)
COMMON/PARAM/S»DS»DSM» I0UT /SAMPLE/BT
IR=0
DXN = O,
DO 20 I=mi,sN
DX(I) = O,
DO 10 J=i,yN
10 DXCXI) = DX(I)Y + B(I»J)RF(J)
20 DXN = DXN + DX(I)%x%x2
DXN = SQRT(DXN)
IF(DXN.LE.DEM) GO TO 50

C

C INCREMENT T0O BIG

c
DO 30 I=1sN

30 DX(I) = DX{I)%DSM/DXN
DXN = D&M

IF(IOUT.GE.3) WRITE(4+40)
40 FORMAT(’ INCREMENT TOO BIG’)

c

C CHECK FOR CORRECT MOTION

c

50 XDF = 0,
DO 60 I=1sN

60 XDF = XDF + DX(I)XF(I)}
IF(XDF.GT.0.) GO TO 100

c
C MOTION IN WRONG DIRECTION! CHANGE TO THE DIRECTION OF GRADIENT
c
IF(IOUT.GE.3) WRITE(4170)
70 FORMAT(’ NEAR MINIMUM’)
FM = 0. '
DO B0 I=1,N
80 FH = FM + F(I)wR2
DXN = DS
FM = D8/SART(FM)
DO 90 I=1,N
?0 DX(I) = FMXF(I)
100 DO 110 I=1isN
110 X(I) = X(I) + DX(I}
c
C CONSTRAINT THE TARGET POSITIONS WITHIN THE RANGE (BTs-BT)
c

NT1=N/2+1
IFLAG=0

DO 120 I=NT1eN
ABBX=ABB(X(I))
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IFCARSX.LE.-BT) GO TO 120

-
TbRS=x (1) /aB8X
TEMP=-SIGNXXBT
DX(1)=DX(I)+TEMP-X(I)
X(I)mTEMP
120 CONTINUE
IF(IFLAG.EQR.0) GO TO 150
DXN=0 .
DO 130 I=isN
130 DXN=DXN+DX (I)%k2
IF(DXN.NE.O.) GO TO 140
IR=1
XJ=—~1,.E75
RETURN
140 DXN=SQRT (DXN)
150 CALL JFCN(XsNsXJ»DF)
DO 140 I=isN
DF(I) = DF(I) - F(I)
160 F(I) = DF(I) + F(I)
DO 170 I=1sN
BF(1) = 0.
DXB(I) = O,
DO 170 J=1isN
BF(I) = BF(I) + B(I»J)XDF(J)
170 DXB(I) = DXB(I) + DX(JIXB(J:I)
Al = 0.
DO 180 I=1sN
180 Al = A1l + DX(I)XBF(I)
IF(A1.NE,.O.) GO TO 190
IR=»2
RETURN
190 Al = 1,/A1
DO 200 I=i,N
. DO 200 J=isN
200 B(IsJd) = B(Ivd) = ALX(BF(I)4DX(I))XDXB(J)
IF(IOUT.GE+4) WRITE(69210) ((B(JrI)rImieN)rJmirN)
210 FORMAT(2€20.4)
RETURN
END

cx SUBROUTINE BAUSS
c

C GENERATE GAUSSIAN DISTRIZUTION RANDOM NOISE

SUBROUTINZ-GAUSS(IXsBrAM»V) -
AmD _Z
0 10 I=1,12
CALL RANDUZZX»IYsY)
IX=1Y
10 A=A+ Y

V = (A~6.,0) %8 +AM

RETURN

END
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»

SUBROUTINE JFCN
COMFUTE J(X) AND IT8 GRADIENTS

0O0000

SUBROUTINE JFCN (XsN»8SQsDJ)
DIMENSION AMP(4)THETA(4)sX(1)sDJC(1)28(464),8D0T(512)
COMMON /DATA/ Y(44)¢NSySTD /WORK/SDOT,8
NT=N/2
DO 10 K=1,NT
AMP(K) =X (K) ¥%2
10 THETA(K) =X (K+NT)
CALL SSDPOT (NT»AMF»THETArS»SDOT/NS»1)
SSQ=0,
DO 20 JL=1.NS
BML = Y(JL) -SCJL)
SSQ= SSQ-BMLRX2D
20 CONTINUE
DO 40 IR=1,N
SUM=0,
DO 30 JL=1»NS
NN=NX(JL-1) + IR
BML = Y(JL) -S(JL)
SUM=SUM+SDOT (NN) XBML
30 CONTINUE

VARTANCE KNOWN —
ANCE IS UNKN o
DJ(IR) =-SUM/SSA¥NS

UARIANCE IS KNOWN

DJCIR) =sun/smgtg/

o CONTINUE _ -
RETURN

—- T END

dO0000 OO0

c» SUBROUTINE ORDER
c
C ARRANGE THE ORDER OF THE TARGETS ACCORDING TO THEIR IN-SCAN POSITIONS
c
SUBROUTINE ORDER(XsN)
DIMENSION X(1)
NT=N/2
IF(NT.LE.1) RETURN
I1=NT+1
I2=N-1
B0 20 I=I1,I2
Ji=I41
DO 10 J=Ji,N
IFCX(J)LE.XCI)) GO TO 10
TEMP=X(I)
X¢(I)=X(J)
XCJ)=TEMP
TEMP=X(I~NT)
XCI-NT)=X(J=NT)
X(J=-NT)=TEMP
10 CONTINUE
20 CONTINUE
RETURN
END
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Cx SUBROUTINE IC
E FROVIDE INITIAL GUESS FOR GNEW
c

SUBROUTINE IC(XeN»8SQ»IX»ITRL)
DIMENSION X(1)r5(44)+SDOT(S12)rY1(44)
COMMON /SAMFLE/BT /WORK/SDOT»S /DATA/Y(64) NS
NT=N/2
AL=RT
AU=-BT
IF(NT.NE.1) GO TO 20
XJO=1,E7S
DD 10 I=1+NS
10 Y1(I)=Y(I)
G0 TO 50
20 XJO=~§SQ
NT1=NT-1
CALL SSDOT(NT1+X(1)sX(NT)rS»SDOTsNS»0)
DO 30 I=1,NS
30 Y1C¢I)=Y(I)=S(I)
DO 40 I=1,NTY ..
40 X (M= TrRXR=T=1)
350 IFLAG=0
I DO 90 K=1,ITRL
CALL RANDUCIXy»IY,FY)
IX=1Y
THETA=AL + (AU-AL) XFY
CALL SSDOT(1s1.»THETA»S»SDOTsINS»O)
SUM1=0,
DO 60 I=1,NS
60 SUM1=SUM1+8(T)R%2
SUM2=0.,
DO 70 I=1,NS
70 SUM2=SUN24S(I)XY1(I)
AMP=SUM2/SUM1
IFCAMP LT 1,E=4) AMP=1.E-é
XJ=0.,
DO 80 I=1,NS
80 XJ=XJ+(Y1(I)=S(I)RAMP) X%2
IF(XJ.GE.XJO) GO TO 90
IFLAG=1
X (NT)=AMP
X (NT%2)=THETA
XJO=XJ
90 CONTINUE
IF(IFLAG.EN.1) GO TO 100

X(NT)=1.E-6
X(NTX2)=0.
100 RETURN
END
X SUBROUTINE SSDOT

COMPUTE S(T) AND ITS DERIVATIVE AT NS INSTANTS

aGaoOooaon

SUBROUTINE SSDOT(NTsAMP»THETArSySDOT»NS»IFLAG)

REALX4 S<(1),8DOT(1)AMP{L)»THETA(1)

COMMON - /SAMPLE/BT DT

COMMON /SPLINE/ TBEGINs» TDELTANPOINT»ARG(1024)»VAL1(2024)
1 VAL2(1024)»SPLIN1(1024+3) sSPLIN2¢(1024+3)
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C
C IF IFLAG=0» SDOT IS NOT COMPUTED
c

IF(NT.EQ.O0; GO TO 20
N = NT%2
DO 10 I=1ysNS
S(I) =0,
It = (I-1) 2 N
TI=BT+(I-1)%DT
DO 10 K=1,NT
T =TI -~ THETA(K)
KT = IFIX((T-TREGIN)/TDELTA) + 1
D = T-ARG(KT)
81 =((SPLIN1(KT»3) % D + SPLIN1(KT»2))
1 *D + SPLIN1(KT»1)) % D + VALI(KT)
S(I) = S(I) + S1XAMP(K)
IF(IFLAG .EQ. 0) GO TO 10
Ki=Ii + K
c
C SDOT(K1)> IS THE DERIVATIVE OF S W.R.T. B INSTEAD OF A, A=REKX2
c
SDOT(K1) = S1 % 2.%SO0RT(AMP(K))
K2 = K14NT
62 = ((SPLIN2(KT»3)%D + SPLIN2(KT»2))
1 XD + SPLIN2(KT»1)) %D+ VALZ2(KT?
SDOT(K2) =-AMP(K)XxS2
10 CONTINUE
RETURN
20 NM=NTX2%XNS
DO 30 I=1,NS
30 S(I) =0.
DO 40 I=1,NM
40 SpOT(I)= 0.
RETURN
END

»*

SUBROUTINE GMINV

MATRIX INVERSION ROUTINE

SUBROUTINE GMINV(NRsNCrA»UsMRIMT)

MATRIX INVERSION ROUTINE .
INPUT ¢
NRyNC =ROW AND COLUMN DIMEN. OF A
A =MATRIX TO BE INVERTED
MT = PRINT CONTROL VARIABLE
OuTPUT ¢
U = GENERALIZED INVERSE OF A
MR = RANK OF U

oooOoO0Oano0n 0000

EXTERNAL DOT

DIMENSION A(1)sU{1)+S(30)
COMMON/MAIN1I/NDIM
COMMON/INOUT/KIN»KOUT
NDIM1 = NDIM+1

TOL = 1.,E~14

ADV = 1,E-24

MR = NC
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NRM1 = NR-1
TOLL = O,
JJ = 1
no 10 J=1»NC
§(J) = DOT(NRsA(JI)sACII))
IF (S(J) 6T, TOL1) TOL1=S(¢J)
10 JJ =JJ +NDIM
TOLL = ADpYUX TOL1
AV = TOL1
JJ=1
DO 100 J=1sNC
FAC = S(I)
JM1 =J-1
JRM = JJ+NRM1
JCM = JJ+JIML
Do 20 I=JdJrJCM
20 u<I) = 0.
U(JCMI=1.0
IFC J +EQ. 1) GO TO 54
KK=1
PO 30 K=1rJM1
IF (S(K) .EQ, 1.0) GO TGO 30
TEMP= -DOT(NRrA(JI)I »A(KK))
CALL VADD(KyTEMPU(JJ) rUCKK))
30 KK=KK+NDIM
DO 50 L=1+2
KK=1
N0 50 K=1,JM1
IF ¢(S(K) .E@. 0.) GO TO 50O
TEMP ==DOT(NRyA(JJ)rA(KK))
CALL VADD(NR»TEMPrA(JJ) vA(KK))
CALL VADD(Ky TEMPU(JJ) 2 UCKK))
50 KK = KK+NDIM
TOLL =TOL %XFAC+ADV
FAC = DOT(NRsA(JI)rACIS))
54 IF (FAC .GT. TOL1) GOT O 70
Do S5 I=JJsJRM
SS A(I) =0.
S(J) =0,
KK = 1
DO 65 K=1,JM1
IF (S(K) .EQ. 0.) GO TO &5
TEMP ==DOT(KrU(KK) yU(JJ))
CALL VADD (NRsTEMPrACJJI) rACKK))
65 KK = KK+NDIM
FAC =DOT(JsU(JD) v U(JIII)
MR =MR-1
GO TO 75
70 S(J) =1.0
KK=1
DO 72 K=1,JM1
IF (8(K) .EQ. 1.) BO TO 72
_TEMP= ~DOT(NRrA(JJ) rA(KK))
CALL VADD(KyTEMPsUC(JJ) P U(KK))
72 KK=KK+NDIM
73 FAC =1,/8QRT(FAC)
D0 80 I=JJrJRM
80 A(1) = A(I) % FAC
0o 85 Iw=JJyJCM
85 UCT)mU(I)%FAC
100 JImJIENDIM
IF (MR EQ. NR ,OR. MR.EG.-#4l) GO TO 120
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110

120

125

130
135

- OO00oO0O0nN 00

aoaaoon

IF (MT +NE. OJWRITE(KOUT»110)NRyNCyMR
FORMAT(I3+1HX+I2+8H M! RANK»12)
NEND =NCENDIM

JJm=1

DO 135 J=i1yNC

DO 125 I=1,NR

II=l-J)

8(I)=0,

DO 125 KK=JJyNENDsNDIM
S{I)=S(I+A(II+KK)XU(KK)

I1=J

DO 130 I={,NR

UCII)aS(I)

II=II+NDIM

JJ=JJI+NDIML

RETURN

END

SUBROUTINE VADD(NsClrAsB)
INPUT ¢
N = ARRAY DIMENSION
C1 = SCALAR
A = NX1 CECTOR
B = NX1 VECTOR
OUTPUT ¢ .
A = NX1 VECTOR SUM
DIMENSION A(1),B(1)
DO t I=1sN
ACI) =A(I) +C1%B(I)
RETURN
END

FUNCTION DOT(NRrA'B)
INPUT ¢
NR = ARRAY DIMENSION
A = NRX1 VECTOR
B = NR X! VECTOR

DIMENSION A(1):B(1)

naT =0,

DO 1 I=3/NR

DOT=DOT + ACI)XB(I)

RETURN

END
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